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Abstract: We study the strong coupling behaviour of fixed length single trace operators

in the scalar SU(2) sector of N = 4 SYM. We assume the recently proposed connection

with a twisted half-filled Hubbard model. By explicit direct diagonalization of operators

with length L = 4, 6, 8 we study the full perturbative multiplet of those lattice states which

have a clear correspondence with gauge theory composite operators. For this multiplet,

we follow the weak-strong coupling flow to free fermion states and identify in particular

the precise asymptotic fermion configuration. Next, we analyze the Lieb-Wu equations of

the twisted Hubbard model. For the antiferromagnetic state we derive its strong coupling

expansion working at L up to 32. We also study the lightest state in the perturbative

multiplet. This state is non trivial since involves complex solutions of the Lieb-Wu equa-

tions. It is particularly interesting for AdS5 × S5 duality since it is dual to the folded

string semiclassical solution in the thermodynamical limit. We are able to perform the full

analysis and compute the next-to-next-to leading terms in the strong coupling expansion

for the non trivial lengths L = 12 and L = 20. A general formula is proposed for the NLO

expansion for any L = 4(2k + 1), k ∈ N.
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1. Introduction

The quantum behavior of N = 4 super Yang-Mills in the planar limit is crucial in the

context of AdS/CFT correspondence [1 – 5]. In particular, the anomalous dimensions of

certain single trace operators in the planar limit of the N = 4 theory can be compared with

the masses of string states on AdS5× S5 [6]. For instance, the comparison turns out to be

particularly favorable for BMN states [7] where the gauge-string matching can be done at

the perturbative level in the planar gauge theory at the price of analyzing long composite

operators with a large number of constituent fields and few impurities.
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Apart from the gauge-string connections, the N = 4 quantum theory has a rich internal

structure suggesting its quantum integrability. The calculation of anomalous dimensions

in specific sectors of the N = 4 theory can be cast in algebraic form by computing the loop

corrected dilatation operator [8]. The huge mixing problem is then reduced to the analysis

of the eigensystem of the finite dimensional matrix representing the dilatation operator.

Remarkably, at one-loop, the dilatation operator can be identified with the Hamiltonian

of the integrable XXX spin 1/2 lattice model [9]. In the SU(2) sector, Beisert, Dipple

and Staudaucher (BDS) [8, 10, 11] proposed a Bethe Ansatz for the 2-body S-matrix in

agreement with the explicit three loop dilatation operator and consistent with all loop BMN

scaling [7]. The BDS equations describe a spin model of the Heisenberg-type with long

range couplings. The range of the spin interaction increases as the loop order is increased.

After having built the five loop BDS Hamiltonian, they could match the gauge theory

predictions known up to three loops. A disagreement with the gauge theory calculation for

operators with classical dimension L is expected precisely at L loop order due to wrapping

terms. In the thermodynamical limit, these terms are negligible and an all-loop Bethe

Ansatz was proposed.

Using the BDS equations it is possible to compute the largest energy state on the

chain [12, 13]. In the Heisenberg model language, it the non trivial antiferromagnetic

state. Its energy in the thermodynamical limit perfectly agrees with the ground state

energy of a (twisted) one-dimensional Hubbard model at half-filling [14]. The connection

between the spin model and the itinerant fermion model can be understood as follows.

The spin model is nothing but the strong coupling expansion of the fermion model, where

strong means the the hopping term is treated perturbatively. The effective Hamiltonian

for the strong coupling of the Hubbard model contains interactions with a range increasing

with the order of the expansion. This is because successive applications of the hopping

operators connect lattice sites with increasing distance.

With an impressive breakthrough, Rej, Serban and Staudacher (RSS) proposed the

Hubbard model as the correct microscopic model behind the integrable structure of the

N = 4 SYM dilatation operator [12]. In other words, they suggest that it could predict at

all loops and non perturbatively the anomalous dimensions of the gauge theory operators

for any finite L. This proposal also overcomes the problems related to the wrapping inter-

actions in the long range spin model [15]. The RSS proposal is still a conjecture although

with robust theoretical motivations. To pursue its assessment, it would be necessary to

perform a four loop calculation in the gauge theory. Waiting for this check, the Hubbard

model can be considered as a powerful Ansatz for the description of the gauge theory at

finite operator lengths and beyond the perturbative regime.

Actually, the appearance of the Hubbard model remains somewhat mysterious and

intriguing [16]. In particular, the Hubbard model describes fermions with spin and admits

states with two fermions in the same site. This extra states cannot be identified immediately

with gauge theory operators. Indeed, it is not clear what is the role of its extra states

which at strong coupling definitely mix with the perturbative states. Waiting for a better

understanding of the role of Hubbard model, we can assume an optimistic attitude and

exploit it to investigate the weak-strong coupling behavior of anomalous dimensions.

– 2 –
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The main technical tool in the analysis of states in the Hubbard model are its Lieb-

Wu equations which encode integrability. The Lieb-Wu equations are precious in the

study of the thermodynamical limit including finite size corrections [17 – 19]. However, the

machinery works well only for particular states. In the thermodynamical limit, the Bethe

roots accumulate on a discrete set of non trivial curves in the complex plane. The integral

equations for the root density are quite difficult due to unknown shape (and number) of

the contours. At weak coupling, the Lieb-Wu equations reduce to the BDS Ansatz of

Heisenberg type. In some favorable cases a solution for the thermodynamical limit can

be found. Remarkably, the solution can also be matched with specific semiclassical string

states [20 – 24]. The analysis of the Lieb-Wu equations is more problematic and the full

spectrum of the twisted Hubbard model at finite large L remains a quite difficult task.

As an alternative approach to solving the Lieb-Wu equations, J. Minahan has recently

proposed [25] to analyze directly the twisted Hubbard model Hamiltonian on small lattices

to understand the features of the spectrum. This is an interesting approach aimed at un-

derstanding the strong coupling behavior of states associated to gauge invariant operators.

In this paper, we analyze single trace cyclic operators with zero SU(2) spin of the form

Tr
(
ZJ ΦJ

)
+ . . . (1.1)

with large J . Here, Z, and Φ are the charged scalar fields in the N = 4 supermultiplet. As

usual, dots stand for various other orderings of the scalar fields required to obtain eigen-

states of the dilatation operator. The above set of operators, all with classical dimension

2J is closed under perturbative renormalization. It is not clear what happens at strong

coupling. Indeed, it has been suggested that some surprise could occur [26]. In this di-

rection, it seems to be important to understand the mutual role of the perturbative states

and the additional states in the Hubbard model.

As a first step of our analysis, we collect and explain some general features of the states

belonging to what we call the perturbative multiplet. These are the states in the Hubbard

model with a clear identification with single trace operators in the gauge theory. Then,

we exploit the direct approach of [25] to study the full spectrum at L = 4, 6, 8. The case

L = 4 is discussed in [26] and here it is reviewed to present the method and prepare for

larger L. The cases L = 6 and 8 are more involved and reveal interesting features. In all

cases, we determine precisely the flow to large g.

The direct analysis can hardly be pushed to much larger values of L. Hence, we revert

to the numerical exploration of the complete Lieb-Wu equations. We perform the analysis

of the antiferromagnetic state (the one with highest anomalous dimension) working with

up to L = 32 sites and providing the NNLO strong coupling expansion of its anomalous

dimension.

Next, we consider the lightest state in the perturbative multiplet. Exploiting some

features of this state in the thermodynamical limit, we solve numerically the Lieb-Wu

equations at L = 12, 20 (the first non trivial cases of L = 8k + 4, k ∈ N). These are

remarkable values of the composite operators length. Nevertheless, the analysis is per-

formed in full details obtaining also in this case the NNLO strong coupling expansion of

– 3 –
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the anomalous dimension. This analysis is important in our opinion since it is an explicit

study of the Lieb-Wu equations at large but finite L.

The paper is closed by a conjecture about the general form of the lightest state for

lengths L of the form 4(2k + 1), k ∈ N. A discussion of the comparison with the BMN

limit is also discussed.

2. Anomalous dimensions in N = 4 SYM and the Hubbard model

The four dimensional N = 4 SYM theory is finite. Its non trivial quantum properties

are encoded in the behavior of gauge invariant composite operators. The gauge group is

SU(N) and we are interested in the planar limit N → ∞. We introduce the coupling g

related to the large N ’t Hooft coupling λ

g2 =
λ

8π2
, λ = g2

YM N. (2.1)

In the so-called SU(2) sector of N = 4 SYM, we consider gauge invariant composite oper-

ators of definite scaling dimension

Tr
(
ZL−M ΦM

)
+ . . . (2.2)

where Z, Φ are charged scalar fields. The classical dimension is L, the number of fields.

In the following, we shall simply call L the length due to the lattice representation that we

are going to introduce. The above composite operators have non trivial renormalization

properties and acquire anomalous dimensions with all-loop corrections

∆(g) = L+
∑

`≥1

∆` g
2`. (2.3)

As we discussed in the Introduction, they can be computed as the eigenvalues of a charge

D. It is the dilatation operator and belongs to an infinite tower of commuting charges. Its

perturbative expansion (at two loops) is

D = L+
g2

2

∑

i

(1− σi · σi+1)− g4

4

∑

i

(3− 4σi · σi+1 + σi · σi+2) + · · · , (2.4)

where the σi matrices act on the cyclic states of a spin 1/2 chain. A particular operator is

mapped to a spin chain state in the natural way, e.g.

Tr (Z Z ΦZ · · ·) −→ | ↑↑↓↑ · · ·〉+ cyclic translations (2.5)

The dilatation operator at finite g is thus non local. The RSS proposal identifies the up and

down spin with fermions in two spin states. It also add states with two fermions occupying

the same site. On this enlarged state space, RSS define an Hubbard-type Hamiltonian. In

the following we shall consider the case L ∈ 2N and M = L/2 and look at operators with

zero SU(2) spin. The explicit local Hubbard Hamiltonian is

H = H0 +
g√
2
H1, (2.6)

– 4 –
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where

H0 = L−
L∑

i=1

n↑,i n↓,i, nσ,i = c†σ,i cσ,i, (2.7)

H1 =
∑

σ=↑,↓

(
L−1∑

i=1

c†σ,i cσ,i+1 + eiφc†σ,L cσ,1

)
+ h.c. (2.8)

The fermion creation and annihilation operators satisfy canonical anticommutation rela-

tions

{cσ,i, c
†
σ′ ,j} = δσ,σ′ δi,j , (2.9)

{cσ,i, cσ′ ,j} = {c†σ,i, c
†
σ′ ,j} = 0. (2.10)

Periodic boundary conditions are understood. The twisting phase in the boundary link is

fixed at φ = π/2.

The Hamiltonian (2.6) is symmetric under the SU(2) generators

Sz =
1

2

L∑

i=1

(n↑,i − n↓,i), (2.11)

S+ =

L∑

i=1

c†↑,i c↓,i, S− = (S+)†. (2.12)

At half-filling and with an equal number of up and down fermions the z-component is

automatically zero.

The Hamiltonian (2.6) is also invariant under the shift

cσ,j → eiφ/L cσ,j+1, j = 1, . . . , L− 1, (2.13)

cσ,L → eiφ(L+1)/L cσ,1, (2.14)

with related transformation properties of the c† operators. The states invariant under this

symmetry will be called cyclic states and are the relevant ones to represent single trace

operators in the gauge theory.

The Hamiltonian can be written in a simpler form after the transformation

cn = ei nφ/L c̃n. (2.15)

The on-site Coulombian term H0 is unchanged. The hopping part H1 becomes

H1 =
∑

σ=↑,↓

L∑

i=1

eiφ/L c̃†σ,i c̃σ,i+1 + h.c., (2.16)

and the shift symmetry is written simply

c̃n → e2iφ/L c̃n+1. (2.17)

– 5 –
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The hopping term is diagonalized by introducing fermion operators in momentum space

aσ,p =
1√
L

L∑

n=1

e−i p n c̃σ,n, (2.18)

where the lattice momenta can take the values

pn =
2π n

L
, n = 0, 1, . . . , L− 1. (2.19)

The dispersion relation for the scaled Hamiltonian H1/
√

2 is then

εn =
√

2 cos

(
2πn

L
+

π

2L

)
. (2.20)

Cyclic states of the original Hamiltonian with L fermions can be built in momentum spaces

by acting on the vacuum with L a†σ,p operators with a total momentum
∑
p being an odd

multiple of π due to the phase factor e2iφ/L.

3. The perturbative multiplet

As we have seen, the RSS construction introduces additional states with fermion double

occupancy which do not have a direct correspondence with the gauge theory composite

operators. As we remarked in the Introduction, the role of these states is not totally clear.

However, we can exploit them as an auxiliary device and focus on what we shall denote

the perturbative multiplet. This is the set of states which at g → 0 reduce to states with

no double occupancy and have ∆(g) → L, the maximal value at g = 0. In other words,

these are the states which flow at weak coupling to states that can be naturally mapped

to gauge invariant single trace operators. As g increases, they are no more the maximal

energy states and mix with all the extra states.

At very large g, any state flows to a free fermion state which is an eigenstate of

the hopping term H1. Our aim is to understand the asymptotic free fermion content of

specific states in the perturbative multiplet. In particular, at large g we find ∆(g) ∼
δ g+O(1) where δ is the hopping energy of the asymptotic free fermion state. We show in

figure (1) the qualitative description of the spectrum. The up most state is the so-called

antiferromagnetic state (AF). The bottom part of the perturbative multiplet is composed

of what we shall call light states, where light means that the anomalous dimension is small

in the weak coupling region. The multiplets of extra states with double occupation are

also schematically shown. In principle they can cross the perturbative multiplet. In the

following sections, we shall discuss some general features of the AF and light states that

can be derived from general principles and an analysis of the BDS equations.

3.1 The antiferromagnetic state

At even L the AF state is non degenerate. Its anomalous dimension is known in the

thermodynamical limit. In terms of the planar coupling λ = 8π2 g2, it reads [13]

lim
L→∞

∆AF(λ,L)

L
= 1 +

√
λ

π
f

(
π√
λ

)
, (3.1)

– 6 –
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g

∆

....

AF

....

light states

....

L

L−1

Figure 1: Qualitative description of the Hubbard model spectrum. The upper line is the AF state.

The lowest dashed lines in the perturbative multiplet are the light states. We also show two states

from a different multiplet. One of them crosses a light state. At large g all lines are linear in g. At

small g, ∆(g) = L+O(g2) in the perturbative multiplet.

where

f(x) =

∫ ∞

0

dk

k

J0(k) J1(k)

1 + e2 k x
. (3.2)

This function is well known to be non-analytic in x = 0. However, it admits the asymptotic

expansion [27]

f(x) =
1

π
− x

4
+

N∑

m=1

µmx
2m +O(x2N+2), (3.3)

where

µm =
(2m− 1)(22m+1 − 1) [(2m− 3)!!]3

23m−1(m− 1)!

ζ(2m+ 1)

π2m+1
, (−1)!! ≡ 1. (3.4)

Despite being only asymptotic and not convergent, the above expansion has been shown to

reproduce correctly the second order perturbative correction at large λ. This means that

we can expand the anomalous dimension at large λ as

∆AF(λ,L) = a1(L)
√
λ+ a2(L) + a3(L)

1√
λ

+ . . . , (3.5)

and the limits limL→∞ ak(L) are obtained by replacing f(x) by its asymptotic expansion.

At second order, we have

f(x) =
1

π
− x

4
+

7

4

ζ(3)

π3
x2 + . . . (3.6)

and we obtain

lim
L→∞

∆strong
AF (λ,L)

L
= 1 +

√
λ

π
f

(
π√
λ

)
=

√
λ

π2
+

3

4
+

7

4

ζ(3)

π2

1√
λ

+ . . . =

– 7 –
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=
2
√

2

π
g +

3

4
+

7

8π3
√

2
ζ(3)

1

g
+ . . . . (3.7)

Here, ∆strong
AF (λ,L) stands for the expansion eq. (3.5). Later, we shall compare this predic-

tion with the finite L analysis of the Lieb-Wu equations.

3.2 The light states

At the bottom of the perturbative multiplet there are light states. These are light in the

sense that their anomalous dimension is small in the perturbative region. These states are

highly non trivial in the BDS description. In the Heisenberg language, up to a change of

sign in the anomalous dimension, they are states which can be built adding many excitation

over the antiferromagnetic state respecting the constraint of zero spin and cyclicity. Not

very much is known about these states since they correspond to non trivial distributions of

Bethe roots in the thermodynamical limit [28]. In some cases, the Bethe Ansatz equations

can be solved at L → ∞. An example is the lightest state which is associated with a

limiting double contour distribution [20, 21]. For brevity, we shall denote this state as |FS〉
since in the BMN limit it is dual to the so-called folded string solution [29].

The state |FS〉 can be studied at finite L and its anomalous dimension can be loop

expanded. If we express the result in terms of the ’t Hooft coupling λ we find

∆FS(λ,L) = L+
∑

`≥1

c`(L)

L2`−1
λ`. (3.8)

The reason for the various explicit powers of L is that all the coefficients c`(L) have finite

limits as L→∞. Hence, the state |FS〉 admits the BMN limit

L→∞, fixed
λ

L2
= 8π2

( g
L

)2
. (3.9)

It is usual to introduce the coupling λ′ = λ/J2 where J = L/2 is the angular momentum

of the folded string. The coupling λ′ is fixed in the BMN limit. The BMN limit of the

anomalous dimension is then

lim
L→∞

1

L
∆FS

(
λ′L2, L

)
= F (λ′), λ′ fixed. (3.10)

The function F (λ′) has been first computed in [29]. At small λ′, it reproduces the gauge

theory perturbative expansion

F (λ′) = 1 +
0.7120

8
λ′ + . . . . (3.11)

At large λ′, F (λ′) ' 1√
2

(λ′)1/4, the typical behavior expected from AdS/CFT duality [30].

In this paper, we work at finite L and cannot access the limit eq. (3.10). Instead we are

studying the |FS〉 state at fixed L, expanding ∆FS at large λ′. This is the same procedure

we followed for the AF state and is the kind of investigation described in [25]. We remark

– 8 –
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Figure 2: Spin correlation function for the lightest |FS〉 state of the Heisenberg chain (under the

cyclic and S = 0 constraints).

that there can be important differences between this and the BMN limits. At finite L and

λ′ there can be terms with ambiguous λ′, L→∞ limit. An example could be, for instance,

λ′/L
1 + λ′/L

, (3.12)

tending to 1 when λ′ →∞ and to 0 when L→∞.

BMN scaling appears to be a general feature of the light states and is quite effective

in the search for the corresponding dual string states. It is natural to look at BMN scaling

as an infinite volume limit where the fixed ratio
√
λ′ ∼ g/L is interpreted as a finite size

scaling variable. This smooth thermodynamical limit on the lattice can be explored more

explicitly by evaluating in the Heisenberg model the SU(2) invariant correlation function

Gk = 〈FS | σi · σi+k |FS〉. (3.13)

In figure (2) we show its behavior at various L. Details of the calculation are reported in

appendix A. The correlation function Gk expressed in terms of the scaled position k/L−1/2

tends to a smooth curve at large L. Similar results can be obtained for the other low lying

states in the perturbative multiplet. For completeness, we also show in figure (3) the

spectra of one loop anomalous dimensions for all S = 0 cyclic states of the Heisenberg

model with even 8 ≤ L ≤ 16.

4. Analysis of the full spectrum

In this section, we begin the analysis of the information that can be derived in the frame-

work of the full Hubbard model. In order to understand the general features of the weak to

– 9 –
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n  (state index)

0
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30

∆ n(1
)

L = 8
L = 10
L = 12
L = 14
L = 16

Figure 3: Spectra of one loop anomalous dimensions at even 8 ≤ L ≤ 16. The anomalous

dimension of the n-th state is written ∆n = L+ ∆
(1)
n g2 + · · · and the plot shows ∆

(1)
n .

strong coupling flow we analyze the full spectrum at variable g and L = 4, 6, 8. We follow

the direct approach of Minahan [25] already applied to the case L = 4 that we also review

to fix the approach, extending it to somewhat larger values of L. Later we shall discuss a

different approach based on the numerical solution of the Lieb-Wu equations.

4.1 Review of the L = 4 case

As explained in the very nice investigation [25], in the L = 4 case and after restricting to

cyclic states with S = 0, there are only 6 remaining states. The antiferromagnetic state

is non degenerate. Its perturbative expansion involves only even powers of g as an exact

discrete symmetry of the model

∆ = 4 +
∑

`≥1

c` g
2`. (4.1)

The full spectrum can be easily evaluated numerically and leads to the weak-strong coupling

flow shown in figure (4).

As explained in [25], the perturbative expansion of ∆ can be recovered quite efficiently

from the expansion of the secular determinant

P (∆, g) = det

(
H0 +

g√
2
H1 −∆

)
. (4.2)

One finds,

P (∆, g) = ∆6−17∆5+(119−16g2)∆4+(−439+176g2)∆3+(900−716g2 +32g4)∆2 +

+(−972+1276g2 −160g4)∆+432 − 840g2+200g4. (4.3)

– 10 –
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Figure 4: Spectrum flow for the Hubbard model at L = 4. The boldface line is the highest

eigenvalue.

Replacing the expansion (4.1) and matching the coefficients we find immediately

∆ = 4+6 g2−12 g4+42 g6−318 g8+4524 g10−63786 g12+783924 g14−8728086 g16+

+93893622 g18−1038217494 g20+12181236666 g22 + · · · (4.4)

At strong coupling (large g) the leading behavior of the eigenvalues is linear in g with

a slope given by the eigenvalues of H1/
√

2. These are not immediately obtained from

the dispersion relation because not all multifermion states are allowed by the cyclic and

S = 0 conditions. The explicit eigenvalues of the 6 × 6 matrix H1/
√

2 can be computed

analytically and are

0, 0,−2

√
2−
√

2, 2

√
2−
√

2,−2

√
2 +
√

2, 2

√
2 +
√

2. (4.5)

From the free fermion dispersion relation eq. (2.20) we see that the highest state has a

slope that unambiguously identifies it with the free fermion state with the following level

occupation

n↑ = (0, 3), n↓ = (0, 3). (4.6)

The notation means that the components of nσ are the energy modes of the σ type fermions

according to eq. (2.20). This is nothing but the ground state of the Hubbard hopping term.

4.2 Extension to longer operators

The extension of the above direct approach to longer operators is in principle straightfor-

ward. However, some technical issues must be clarified in order to make the procedure

systematic. We now illustrate the general features and then discuss the L = 6 and L = 8

cases.

To build the relevant states we first enforce the S = 0 condition. Since N↑ = N↓, we

have automatically Sz = 0. The operators S± are ineffective on doubly occupied sites.
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Also, they cannot move around the unpaired fermions. As a consequence, we can partition

the problem of listing S = 0 states according to several sectors where we fix (a) the number

and positions of the paired fermions, (b) the positions of the unpaired fermions.

Given such a sector, the fermions are no more itinerant from the point of view of the

spin calculation. Then, spin zero states are simply the spin zero component of the SU(2)

decomposition of the product of N fundamental representations. The actual wave function

of these states is obtained by taking independent antisymmetrizations with respect to pairs

of up and down fermions. The independent antisymmetrizations are explicitly given by the

SU(2) Young tableaux with two rows and N/2 columns. The Young tableaux entries in

each column determine the independent antysymmetrizations.

To give an example. Suppose that we have 3 + 3 fermions on a L = 6 lattice. In a

sector where there is one paired couple in the rightmost site and the unpaired fermions are

in the 1, 2, 3, 4 position, we have 6 states

|∗, ∗, ∗, ∗, 0, ↑↓〉, ∗ ≡↑ or ↓, (4.7)

with 3+3 fermions in total. Then, the relevant two Young Tableaux with their associated

antisymmetrization prescriptions are

1 2
3 4

1 3
2 4 , (4.8)

giving two spin zero states, in this sector.

The number of Young tableaux with S = 0 constructed with L/2 up and L/2 down

fermions is the first coefficient in (as usual (−n)! ≡ 0 when n ∈ N)

[
1

2

]⊗2N

=
⊕

s=0,1,2,...

(2s+ 1)(2N)!

(N + s+ 1)!(N − s)! [s], (4.9)

where [s] is the spin s representation of SU(2). Hence the desired number is the Catalan

number CL/2 [
1

2

]⊗L
= CL/2 0⊕ · · · , CL/2 =

L!

(L/2)!(L/2 + 1)!
. (4.10)

Summing over sectors with p doubly occupied sites, we find the total number of S = 0

states

NS=0 =

L/2∑

p=0

(
L

p

)(
L− p
L− 2p

)
(L− 2p)!

(L/2− p)!(L/2 − p+ 1)!
=

L!(L+ 1)!

((L/2)!(L/2 + 1)!)2
. (4.11)

This number is reduced roughly by the factor 1/L after the cyclic projection. This is im-

plemented rather easily as follows. We denote by U the unitary operator which implements

the shift symmetry. It can be checked that UL = 1 on half-filled states. Cyclic states |s〉
satisfy U |s〉 = |s〉. We then consider the shift symmetrizer

S =
1

L
(1 + U + · · ·+ UL−2 + UL−1). (4.12)
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Figure 5: Spectrum flow for the Hubbard model at L = 6. The boldface line is the highest

eigenvalue.

IfH0 is the space of zero spin states and C0 the space of cyclic zero spin states, it is clear that

the image SH0 contains a basis of C0. Indeed, any state |s〉 ∈ C0 can be written |s〉 = S|s〉
and thus belongs to is in SH0. Hence, we can compute the image SH0 and apply the

Gram-Schmidt orthonormalization algorithm to simultaneously produce an orthonormal

basis and also remove linearly dependent states. Of course, this procedure can be applied

to the states in each of the sectors that have been identified in the construction of S = 0

states. This means, we repeat, sectors with fixed paired fermions and fixed positions of

unpaired fermions. In addition, the cyclic structure of the fermion configurations in the

cyclic states greatly helps in performing the orthonormalization by restricting to states

with the same configurations modulo translations.

After these technical remarks, we analyze in turn the L = 6, 8 cases which, as we shall

discuss, illustrate in our opinion some interesting features valid in more complicated cases.

4.3 The non degenerate L = 6 case

After the spin zero and cyclic constraints, there is 1 state with no paired fermions. Thus, the

antiferromagnetic state is again non degenerate. Also, there are 10 states with two pairs,

14 states with three pairs and 4 states with all fermions paired. The total dimension is 29.

figure (5) illustrates the weak-strong coupling flow of the spectrum. As compared with the

L = 4 cases, we observe several crossings of the coupling dependent levels. Such crossings

are well known in integrable models, where they are explained in terms of additional

conserved charges commuting with the Hamiltonian [31].

It is not feasible to evaluate the secular determinant P (∆, g) at least if we do not want

to resort to numerical evaluations. Instead, we can determine the analytical perturbative

expansion of the highest eigenvalue by standard perturbation theory of non degenerate

eigenvalues. Let ψ0 be the normalized eigenvector of H0 associated with the non degenerate

– 13 –
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eigenvalue L. Then, we set ε0 = L and iterate for n ≥ 1

vn = −H1 ψn−1 +

n−1∑

k=1

εn−k ψk, (4.13)

εn = −(ψ0, vn), (4.14)

ψn =
1

H0 − L
(εn ψ0 + vn) . (4.15)

The last equation is evaluated in the subspace (ψ0, ψn) = 0 where the (pseudo) inverse

operator (H0 −E0)−1 exists. The perturbative expansion of the eigenvalue of H0 + g√
2
H1

is then

ε(g) =
∑

n≥0

εn

(
g√
2

)n
. (4.16)

This algorithm is quite fast since it is based on matrix vector multiplications only. Applying

it, we find

∆ = 6 + 6 g2 − 9 g4 +
63 g6

2
− 621 g8

4
+

7047 g10

8
− 100953 g12

16
+

+
2006127 g14

32
− 46992069 g16

64
+

1100850183 g18

128
− 24465145473 g20

256
+

+
514257122079 g22

512
− 10323764001117 g24

1024
+ · · · (4.17)

This expansion can be compared with the BDS approach based on the Heisenberg mo-

del [11]. The agreement is perfect up to five loop order which is where the long-range

Heisenberg Hamiltonian is reliable at L = 6. As we remarked, the Hubbard model cal-

culation is conjectured to be exact at all orders in the loop expansions, although a proof

is lacking. Of course, knowing the one-loop Bethe roots, the above expansion can also be

obtained by perturbative expansion of the Lieb-Wu equations. We do not insist on this

point, since we are mainly concerned with strong coupling properties.

Again, we can exploit the direct diagonalization approach to identify the free fermion

state to which the g = 0 highest state flows. Comparing the slope of the highest eigenvalue

(the maximum eigenvalue of H1/
√

2) with the dispersion relation eq. (2.20) we find the

two possibilities

n↑ = (0, n, 5), n↓ = (0, n′, 5). (4.18)

where (n, n′) can be (1, 4) or (4, 1). The contribution of these two fermions cancels in

the energy. Indeed, ε1 + ε4 = 0. This means that we flow to an excited state of the full

Hubbard model. This is a clear consequence of the cyclic projection. Indeed, the ground

state of the Hubbard hopping term for L = 6 is not cyclic and is instead odd under the

transformation eq. (2.13).

The spin zero condition determines uniquely the correct combination of states which

is the antisymmetric combination

1√
2

(|0, 1, 5〉↑ ⊗ |0, 4, 5〉↓ − |0, 4, 5〉↑ ⊗ |0, 1, 5〉↓) (4.19)

As a check, we see that the largest eigenvalue of the explicit 29 × 29 matrix H1 on the

cyclic spin zero states is non degenerate.
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4.4 The degenerate L = 8 case

On a L = 8 lattice there are 4900 half-filled states in the full Hubbard model. After

the spin zero and cyclic constraints, there are 3 states with no paired fermions, 35 states

with two pairs, 108 states with three pairs, 70 states with four pairs, and 10 fully paired

states. The total dimension is thus reduced to 226. This is a remarkable reduction, but the

dimension remains rather high. Nevertheless, we shall be able to complete the analysis.

The maximum eigenvalue of H0 is threefold degenerate. It contains the antiferromagnetic

state and other two states with lower anomalous dimensions. We postpone the discussion

of flow. Again, it is clearly not feasible to evaluate the secular determinant. Also, we must

deal with the complication that there are 3 states with eigenvalue L = 8 at g = 0.

We can determine the perturbative expansion of the highest eigenvalue by quantum

mechanical formulae for perturbation theory of degenerate eigenvalues. In the case under

consideration the degeneration is removed at second order in g. A very simple practical

algorithm is then the following.

Let P0 be the projector onto the degenerate eigenspace E0 with eigenvalue E0 = L = 8.

Let

D = P0 H1 (1− P0)
1

H0 −E0
(1− P0)H1 P0 (4.20)

be a 3 × 3 matrix restricted to E0. Let its three eigenvectors be ψ0, ψ
′
0, ψ

′′
0 in some order.

They have distinct eigenvalues. We iterate for n ≥ 0

ψ2n+1 =
1

H0 −E0




2n−1∑

k=1, odd

ε2n+1−k ψk −H1 ψ2n


 , (4.21)

v2n+2 =

2n∑

k=2, even

ε2n+2−k ψk −H1 ψ2n+1, (4.22)

ε2n+2 = −(ψ0, v2n+2), (4.23)

ψ2n+2 =
1

H0 −E0
(ε2n+2 ψ0 + v2n+2) + α′2n+2 ψ

′
0 + α′′2n+2 ψ

′′
0 . (4.24)

The coefficients α′2n α
′′
2n are fixed by the condition P0 v2n−2 = 0.

The explicit matrix D is rather complicated. Its eigenvalues are the three roots of the

equation (of course in agreement with the one loop calculation in [8])

λ3 + 40λ2 + 464λ + 1600 = 0. (4.25)

Finding numerically the eigenvectors and applying the above algorithm with the three

possible choices for ψ0, we immediately find the three perturbative expansions

∆ = 8 + 11.3022 g2 − 22.1706 g4 + 79.5035 g6 − 352.94 g8 + (4.26)

+1777.24 g10 − 9743.47 g12 + 56739.6 g14 − 825617 g16 + · · · ,
∆′ = 8 + 5.45222 g2 − 7.94042 g4 + 31.2193 g6 − 159.093 g8 + (4.27)

+896.064 g10 − 5378.33 g12 + 33796.9 g14 − 222137 g16 + · · · ,
∆′′ = 8 + 3.24559 g2 − 1.88899 g4 + 1.2772 g6 + 1.0331 g8 + (4.28)

−8.2996 g10 + 27.3006 g12 − 70.9279 g14 + 159.235 g16 + · · ·
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Figure 6: Spectrum flow for the Hubbard model at L = 8.

They are unavoidably numeric since they involve the algebraic irrational λ.

Again, we can compare with the BDS prediction at five loop. It is given in [11] terms

of an algebraic number (denoted ψ) which agrees with the above three λ roots. The

agreement is complete. Of course, beyond five-loop, the above expansions derived in the

Hubbard model are new and must be checked against gauge theory perturbation theory.

Coming to the analysis of the weak-strong coupling spectrum flow, we see that it is

quite complicated as illustrated in figure (6). The identification of the asymptotic free

fermion state is less easy but straightforward. Let us denote by

|∆〉, |∆′〉, |∆′′〉, (4.29)

the three states with eigenvalues expressed by the above expansion. The highest state |∆〉
is the antiferromagnetic state and does not cross the other states along the flow. Instead,

the other two degenerate states undergo several crossing as g is increased. However, it is

easy to follow them along the crosses. We enumerate states starting from the highest. The

two subleading states turns out to be 3rd and 8th asymptotic free fermion states. This is

more clearly illustrated in figure (7) where we show the first 9 ordered eigenvalues. Several

crossings can be observed and in the end, the asymptotic eigenvalues remain separated.

Remarkably, at large g the states |∆′〉 and |∆′′〉 are close (in energy) to partner states |∆̃′〉
and |∆̃′′〉 that we shall now discuss.

As a first step toward the identification of the asymptotic states with free fermion

states, we analyze the eigenvalues of the matrix H1/
√

2 and compare them with the dis-

persion relation. If we denote by s, s′, s′′ the asymptotic slopes of the energies of the three

states |∆〉, |∆′〉, |∆′′〉, with respect to the coupling g, we find the following (unique) match

in terms of the free fermion energies eq. (2.20),

s = 2(ε0 + ε1 + ε6 + ε7), (4.30)
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Figure 7: Spectrum flow for the Hubbard model at L = 8. A detailed view of the highest 9

eigenvalues.

s′ = 2(ε0 + ε7), (4.31)

s′′ = 2(ε1 + ε7). (4.32)

The first relation permits to conclude that the highest states is nothing but the Hubbard

model hopping term ground state. The other two relations identify two levels which are

occupied by an up-down doublet ↑↓ in momentum space. The remaining 4 fermions (two

up and two down) must be placed in the remaining levels with a total zero additional

energy and respecting the cyclicity and zero spin conditions. This can only be achieved by

leaving the four fermions unpaired and placing them symmetrical around the zero energy

value. The level population is shown in figure (8).

The first state on the left is the Hubbard model hopping ground state, as discussed. In

the other states we have shown the two levels which are unambiguously filled with a pair ↑↓.
We have also shown a particular admissible distribution of the remaining two up, and two

down fermions on the allowed four symmetrical levels. We have circled them with dashed

ellipses to emphasize that this is just one component of the exact state. Indeed there are

several possible distributions of the unpaired fermions. To further analyze, we take into

account the spin zero condition. For both |∆′〉 and |∆′′〉 the allowed states reduced to the

two independent states that are obtained by antisymmetrizing two pairs of up and down

fermions.

Of course, there are two states because of the SU(2) decomposition

1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
= 2⊕ 1⊕ 1⊕ 1⊕ 0⊕ 0. (4.33)

To be explicit, in the case of |∆′〉, two orthonormal states can be taken to be

|e′1〉 =
1

2
(| l, l, ↓, ↑, ↓, ↑, 0, 0〉p − | l, l, ↓, ↑, ↑, ↓, 0, 0〉p +

−| l, l, ↑, ↓, ↓, ↑, 0, 0〉p + | l, l, ↑, ↓, ↑, ↓, 0, 0〉p), (4.34)
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Figure 8: Asymptotic free fermion states for the perturbative multiplet at L = 8. As explained in

the text, the fermions encircled by dashed ellipses indicate one of the various (spin) components of

the actual state.

|e′2〉 =
1

2
√

3
(2| l, l, ↓, ↓, ↑, ↑, 0, 0〉p − | l, l, ↓, ↑, ↓, ↑, 0, 0〉p − | l, l, ↓, ↑, ↑, ↓, 0, 0〉p +

−| l, l, ↑, ↓, ↓, ↑, 0, 0〉p − | l, l, ↑, ↓, ↑, ↓, 0, 0〉p + 2| l, l, ↑, ↑, ↓, ↓, 0, 0〉p) (4.35)

where the states | · · ·〉p are labeled with the fermion occupancy in momentum space and

the momentum sites are ordered from the largest εn (ε0) to the smallest (ε4 = −ε0). With

this notation, the Hubbard model hopping term ground state is | l, l, l, l, 0, 0, 0, 0〉.
Introducing analogous orthonormal states |e′′1,2〉 for the sector spanned by |∆′′〉 and

|∆̃′′〉, the free fermion asymptotic states associated with |∆′〉 and |∆′′〉 are suitable linear

combinations of |e′1,2〉 and |e′′1,2〉 that can be determined by perturbation theory in H0. In

both cases, the relevant asymptotic state is the one with (slightly) larger energy as can be

seen from figure (8).

At first order, the degeneration is not removed. We find the same constant shift in

both doublets. At second order, we find a non trivial energy splitting. We do not report

the expression of the asymptotic eigenvectors which is really not useful. Instead, we give a

closed form for the split eigenvalues.

If we denote by ∆′± and ∆′′± the strong coupling expansion at second order of the

doublets eigenvalues, we find

∆′± = 2 g (ε0 + ε7) +
23

4
+

1

g
δ′± + . . . (4.36)

where

δ′± =
1

128
√

2

√
882 + 584

√
2 +

√
25906 + 16303

√
2 (4.37)
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± 1

64

√
132 + 88

√
2− 2

√
7330 + 5183

√
2 =

{
0.301715

0.183563
(4.38)

The expansion of the second eigenvalue is instead

∆′′± = 2 g (ε1 + ε7) +
23

4
+

1

g
δ′′± + . . . (4.39)

where

δ′′± =
1

128

√√√√1026 + 79
√

2 +

√
724177 − 157633√

2
(4.40)

± 1

16

√√√√10− 3
√

2−
√

29− 1√
2

=

{
0.383745

0.300994
(4.41)

Notice that this is correct for g > 0. Indeed, in general, the above strong coupling ex-

pansions must be written with g → |g| to respect the exact g → −g symmetry of the

spectrum.

As a final comment, we remark that the above complicated expressions have been

checked explicitly against the numerical evaluation of the levels with full agreement.

4.5 Summary of the results for L = 8

In conclusion, taking the upper states and evaluating the energy levels, we find the following

result in the case L = 8. The AF state has been already discussed. The other two states in

the perturbative multiplet have the following strong coupling expression of the anomalous

dimensions

∆′+ =

√
2

(
4 + 2

√
2 +

√
20 + 14

√
2

)
g +

23

4
+

1

g
δ′+ . . . , (4.42)

∆′′+ ≡ ∆FS = 2

√
2 +

√
2 +
√

2 g +
23

4
+

1

g
δ′′+ + . . . (4.43)

5. Direct analysis of the Lieb-Wu equations

A posteriori, we can make some general comments on the previous analysis based on direct

diagonalization. We are considering an Hamiltonian of the form

H = HA + g HB , (5.1)

where g is a coupling. As g flows from 0 to∞, each eigenstate of H flows from an eigenstate

of HA to an eigenstate of HB. It is clear that exact diagonalization permits to follow the

flow for generic HA, HB, however the method is unrealistic for large dimension of the

Hilbert space. The problem is very general and, as such, has no simple solution. Of course,

what saves the day in our context is integrability. In principle, the Lieb-Wu equations can
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be solved for a particular state, i.e. typical configuration of Bethe roots, without the need

for huge calculations of eigensystems. Extending the calculation from g = 0, where the

Bethe roots are those of the Heisenberg model, up to large g should permit in principle to

determine the strong coupling behavior of any state.

However, it is also clear that the general task of solving the Lieb-Wu equations for all

states in the perturbative multiplet and fixed L (possibly large) is not easy [32]. However,

there are exceptions. These are the states where some general knowledge is available about

the limiting distribution of Bethe roots at large L. In the next sections, we shall discuss two

important examples. The first is the AF state. At half-filling, it is the unique state with

completely real solutions to the Lieb-Wu equations. The second example is the lightest

state |FS〉. Here, we know that at large L the Bethe roots condense on two symmetric

curves in the complex plane and we can exploit this information to evaluate them at least

numerically. This case is considerably more difficult than the AF state because the Bethe

Ansatz solution is complex.

Notice that in principle, one could use the original all-loop BDS equations. This

calculation would be reliable in the thermodynamical limit including finite size corrections

if needed. In this paper, we are concerned with finite L properties, and therefore we have

explored the explicit (numerical) solution of the more difficult Lieb-Wu equations.

5.1 Real solution: the antiferromagnetic state

At half filling, the AF state is described by the only genuine real solution of the Lieb-Wu

equations. They read

Lqn = 2π In + 2

L/2∑

j=1

tan−1
[
2(uj −

√
2 g sin(qn + φ))

]
, (5.2)

2π Jk = 2

L/2∑

j=1

tan−1(uk − uj)− 2
L∑

m=1

tan−1
[
2(uk −

√
2 g sin(qm + φ))

]
, (5.3)

where, in our problem, n = 1, . . . , L, and k = 1, . . . , L/2. We focus on the case N = 4p

where φ = π/(2L) and the Bethe quantum numbers are

{In} = {0, 1, 2, . . . , L− 1}, (5.4)

{Jk} =

{
−2p− 1

2
,−2p− 3

2
, . . . ,

2p− 3

2
,
2p− 1

2

}
. (5.5)

The iterative solution of the above equations is quite stable, as it is common when dealing

with real solutions. Following the evolution at g → ∞ of the energy of the highest state,

we have checked that it flows at strong coupling to the ground state |ψ0〉 of the Hubbard

model hopping term. In momentum space, this is the state where all positive energy levels

are doubly occupied

|ψ0〉 =
L−1∏

n=1

∏

σ=↑,↓
a†σ,pn |0〉. (5.6)
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L 8 12 16 20 24 28 32

δL 0.0250979 0.0245631 0.0243433 0.0242308 0.0241652 0.0241234 0.024095

Table 1: Coefficient of the second order correction to the energy of the AF state at finite L ∈ 4N
and large g. A simple polynomial extrapolation at L→∞ gives limL→∞ δL = 0.0240(1).

The AF state remains non degenerate at all couplings and we can apply first order pertur-

bation theory to determine the first subleading correction at large g. Also, from the nu-

merical solution of the Lieb-Wu equations, we can evaluate the finite L next-to-subleading

correction ∼ 1/g.

Summing up, our result for the expansion of the anomalous dimension of the AF state

at finite L and large g reads

∆AF(g, L)

L
=

√
2

L sin π
2L

g +
3

4
+ δL

1

g
+ · · · (5.7)

The first term is the energy of the Hubbard model hopping term ground state with twist.

Its explicit formula comes from the sum

2
√

2

L/4−1∑

n=−L/4
cos

(
2π n

L
+

π

2L

)
=

√
2

sin π
2L

. (5.8)

The coupling independent term is a universal constant. It is evaluated by computing the

matrix element

L− 1

L
〈ψ0|

∑

p,q

a†↑,p a↑,p a
†
↓,q a↓,q|ψ0〉 = L− 1

L

(
L

2

)2

=
3

4
L. (5.9)

The next correction takes the numerical values reported in table (1). The above result is

an exact expansion in inverse powers of g at fixed L. As a non trivial check, it can be

compared with the result eq. (3.7) by taking the L→∞ limit term by term. We obtain

lim
L→∞

∆strong
AF (g, L)

L
=

2
√

2

π
g +

3

4
+ 0.0240(1)

1

g
+ . . . . (5.10)

This is in full agreement with eq. (3.7) since

δ∞ ≡ lim
L→∞

δL =
7

8π3
√

2
ζ(3) = 0.0239866. (5.11)

5.2 A complex solution: the |FS〉 state

The general geometry and symmetry of the Bethe roots for the |FS〉 state at large L are of

great utility in determining them at finite L ∈ 4N. As we shall discuss, there are numerical

difficulties when L = 4p with even p, i.e. Lmod 8 = 0. Instead the case L = 4p with odd

p, i.e. Lmod 8 = 4, can be treated successfully. In the next sections we shall present our

detailed results for the non trivial cases L = 12, 20.
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5.2.1 L = 12

At L = 12 there are 14 states in the perturbative multiplet and many more extra states in

the full Hubbard model. We have determined the one loop Bethe roots for the |FS〉 state

as we now discuss. The six Bethe roots are non zero and symmetric under u→ −u. This

reduces the problem to solving three polynomial equations in three variables. Four roots

are expected to be complex and the other two real. Applying the resultant technique we

find that the complex roots are among the solutions of the following polynomial

R(x) = 1− 291816x2 + 2476695728x4 − 4740875459840x6 + 2716015001869568 x8

−587934012140484608 x10 + 53336517749102178304 x12

−1893188143985026269184 x14 + 27036104777708125093888 x16

−119124909860572824600576x18 − 345397582972412910108672x20

+1499936486421645590790144 x22 + 8744914427777415217414144x24

−1155658862325646445510656 x26 + 7466630646963993812402176x28

−273168717774897644721668096 x30 + 46033164223912000241008640 x32

−219403347416043302531629056 x34 + 965423684859142279840923648 x36

+4267809644452908595622707200x38 + 886394409006105612647399424x40

−2540126101042720433221140480x42 − 10295374756958736948626718720x44

−27408343376808874282372300800 x46 − 16677333147947189938421760000 x48

+23395667776149943429890048000 x50 + 48702367142746624075235328000 x52

+43027672720198395903344640000 x54 + 21488277238759969133690880000 x56

+5377757322242364014592000000x58 +496408368206987447500800000x60 . (5.12)

This polynomial contains several spurious solutions and is perhaps not the most econom-

ical choice. Nevertheless, it contains the exact roots and we quote it for the reader’s

convenience. 1 The roots associated with the |FS〉 state are

u1 = −u2 = α, (5.13)

u3 = −u4 = α, (5.14)

u5 = −u6 = β, (5.15)

where

α = 0.6762450414055523 + 0.9936333912043784 i, (5.16)

β = 0.6780174422473694, (5.17)

in agreement with the results in [20]. We start from this solution plus the condition for

the momenta q

qn =
2π

L
(n− 1), 1 ≤ n ≤ L, (5.18)

1A single polynomial for the case L = 8 is quoted in [11]. However, there is a misprint in one coefficient.

The correct resolvent is R(x) = −1 + 648 x2 − 36464 x4 + 81664 x6 − 16128 x8 + 460800 x10 + 552960 x12.
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Figure 9: State |FS〉 at L = 12. Evolution of the Bethe parameters u1, . . . , u6 up to g = 15.
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Figure 10: State |FS〉 at L = 12. Evolution of the Bethe parameters q1, . . . , q12 up to g = 15.

which is valid at g = 0. Then, we increase g and determine step by step the new solution of

the full Lieb-Wu equations. This procedure is numerically stable and permits to determine

the energy flow as well as the change in the Bethe momenta and u variables.

We show in figure (9), the evolution of the Bethe Ansatz solution {ui} as g is increased

up to g = 15. More interestingly, we show in figure (10), the evolution of the momenta.

The flow permits to derive the asymptotic occupancy in the free fermion limit. In terms of

the indices n, the final occupation of states is as follows. There are singly occupied modes

with mode indices

n = 0, 11, 2, 9, 3, 8, 5, 6, (5.19)
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Figure 11: State |FS〉 at L = 12. Coupling dependence of ∆FS(g).

and two doubly occupied levels at modes

n = 1, 10. (5.20)

As in the L = 8 case, the singly occupied levels contain 4 up fermions and 4 down fermions

in a S = 0 combination. There are several possibilities and only one can be selected by

perturbation theory. We do not pursue the strong coupling correction analytically. Instead

we determine the leading term at large g and the subleading contribution that can be

obtained by first order perturbation theory. The leading contribution (the coefficient of g

at large g) is

2(ε1 + ε10) = 2
√

2

(
cos

5π

24
+ cos

41π

24

)
= 4 cos

π

24
= 2

√
2 +

√
2 +
√

3. (5.21)

The subleading term can be computed analytically and is 26/3. Hence we have found that

for the |FS〉 state at L = 12 we have

∆FS = 2

√
2 +

√
2 +
√

3 g +
26

3
+ 0.597(1)

1

g
+ · · · , (5.22)

where we have also indicated the fitted coefficient of the NNLO term in the strong coupling

expansion. The agreement with the calculated energy is shown in figure (11).

The asymptotic fermion configuration is shown in figure (12) where we simply draw the

single particle level and their occupation without specifying the spin of the singly occupied

levels.
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Figure 12: State |FS〉 at L = 12. Fermion configuration at strong coupling.

5.2.2 L = 16

We can repeat the analysis for L = 16. In this case, we failed to obtain an exact resultant

encapsulating the exact one loop Bethe roots. Instead, we have computed them numerically.

The symmetry of the 8 roots is

u1 = −u2 = α, (5.23)

u3 = −u4 = α, (5.24)

u5 = −u6 = β, (5.25)

u7 = −u8 = β, (5.26)

where

α = 0.9011983985707239 + 0.5000879064837407 i, (5.27)

β = 0.915478863907937 + 1.4850185722704357 i. (5.28)

The imaginary part of α is quite near to 1
2 . This is a source of instability in the solution

of the Lieb-Wu equations. Indeed, as g is increased, we numerically observe that four of

the Bethe roots tend quickly to a singular configuration. This problem does not occur if

Lmod 8 = 4. We do not try to deal with the singularities of the L = 16 case and instead

study the more involved, but more stable case L = 20.

5.2.3 L = 20

The 10 one-loop Bethe roots satisfy the following conditions:

u1 = −u2 = α ∈ R>0, (5.29)

u3 = −u4 = β, (5.30)
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Figure 13: State |FS〉 at L = 20. Evolution of the Bethe parameters u1, . . . , u10 up to g = 18.

u5 = −u6 = β, (5.31)

u7 = −u8 = γ, (5.32)

u9 = −u10 = γ. (5.33)

We find the following numerical solution

α = 1.1309564538305164, (5.34)

β = 1.1310261843923932 + 0.9998455911389437 i, (5.35)

γ = 1.1784184821892867 + 1.980402937535511 i. (5.36)

We show in figure (13), the evolution of the Bethe Ansatz solution {ui} as g is increased

up to g ' 18. figure (14) shows the evolution of the momenta. Again, we can derive the

asymptotic occupancy in the free fermion limit. In terms of the indices n, the singly

occupied modes are

n = 0, 1, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 19, (5.37)

and there are again 2 doubly occupied levels at modes

n = 2, 17. (5.38)

The singly occupied levels contain 8 up fermions and 8 down fermions in a S = 0 combi-

nation. The leading contribution to the anomalous dimension (the coefficient of g at large

g) is

2(ε2 + ε17) = 2
√

2

(
cos

9π

40
+ cos

69π

40

)
= 4 cos

π

40
. (5.39)
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Figure 14: State |FS〉 at L = 20. Evolution of the Bethe parameters q1, . . . , q20 up to g = 18.
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Figure 15: State |FS〉 at L = 20. Coupling dependence of ∆FS(g).

The subleading term can be computed analytically and is 73/5. Hence, in summary, the

|FS〉 state at L = 20 admits the strong coupling expansion

∆FS = 4 cos
π

40
g +

73

5
+ 0.953(1)

1

g
+ · · · , (5.40)

where we have also indicated the fitted coefficient of the NNLO term in the strong coupling

expansion. As before, we shown the agreement with the calculated energy is shown in

figure (15).
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The asymptotic fermion configuration is completely similar to the L = 12 case. The

doubly occupied levels are in the middle of the single particle positive energy levels. The

other positive energy levels are singly occupied, as well as their mirror levels with negative

energy.

5.2.4 Conjecture for the |FS〉 state at general L = 4(2k + 1)

The results at L = 12 and 20 are quite symmetric and completely similar. It is natural to

conjecture that for all L = 4(2k + 1), the pattern is identical. This means that the |FS〉
state is obtained at strong coupling as the state with the following properties.

1. The positive energy single fermion levels are all occupied with one fermion, with the

exception of the central levels with mode numbers

n = k, L− k − 1. (5.41)

These are doubly occupied.

2. The negative energy levels which are mirror of singly occupied levels are also singly

occupied.

3. The negative energy levels which are mirror of doubly occupied levels are empty.

Evaluating the leading and subleading contributions to the anomalous dimension gives the

strong coupling expansion

∆FS(g, L) = 4 cos
π

2L
g +

3L2 − 2L+ 8

4L
+O

(
1

g

)
. (5.42)

Eq. (5.42) is expected to be the exact strong coupling expansion at any fixed L = 4(2k+1).

We conclude with a comment about the other cases L = 4(2k). The explicit results at L = 8

and preliminary data at L = 16 suggest that the |FS〉 state is again flowing to a state like

the above with the same expressions for the leading and subleading terms in the strong

coupling expansion. Indeed, at L = 8, the above parametrization reproduces the exact

result that we derived by exact diagonalization. However, we have not enough empirical

support to firmly establish this result.

6. Summary of results and discussion

To summarize, we report our main results for the large g expansion at fixed L of the

anomalous dimension of the antiferromagnetic and |FS〉 states. For the antiferromagnetic

operator we have found

∆AF(g, L)

L
=

√
2

L sin π
2L

g +
3

4
+ δAF,L

1

g
+ · · · . (6.1)

The first two terms are exact. About the last one, we have shown how to compute it for

large L. We have also provided the asymptotic limit

δAF,∞ =
7

8π3
√

2
ζ(3). (6.2)
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For the folded string dual, we have found (at finite Lmod 8 = 4)

∆FS(g, L) = 4 cos
π

2L
g +

3L2 − 2L+ 8

4L
+ δλ,L

L

g
+ · · · , (6.3)

where we have explicitly computed

δλ,12 = 0.0498(1), δλ,20 = 0.0477(1). (6.4)

In particular, the leading and subleading terms of these expressions are exact at all finite

L. As such they are beyond the region of applicability of the BDS approximation which,

due to wrapping terms, is limited to L → ∞. Indeed, they are a genuine result provided

by the Hubbard model framework where they express properties of specific free fermion

states.

As we remarked, our expansions are obtained by taking λ′ large at fixed L. An im-

portant issue if then the comparison with the BMN limit. Indeed, as pointed out by

Minahan [25], it is not totally clear how to recover the (λ′)1/4 behavior of string states

from the strong coupling expansion of the Hubbard model. The tricky proposal in [25] is

based on the assumption that at large g there are doubly occupied levels with small single

particle energy of order 1/L. Unfortunately, we have seen that this is not valid for the

considered states with many excitations. The doubly occupied levels give an asymptotic

slope ∆/g which is of order 1 for the minimal energy state |FS〉.
The BMN limit is obtained by fixing λ′ = λ/J2 and taking J →∞ where J = L/2 is

the angular momentum of the semiclassical dual state. We have seen that at finite L there

can be correction terms (like eq. (3.12)) with an ambiguity in the L, λ′ → ∞ limit. If we

want to compare with the BMN limit we have to enforce the correct ordering and require

λ′ ¿ L. Let us see the role of this constraint in the case of our data at L = 12 and 20.

The BMN anomalous dimension of the folded string can be written

lim
L→∞

∆FS(λ′L2, L)

L
≡ F (λ′) =

1

2
K(q)

[
4qλ′

π2
+

1

E(q)2

]1/2

, (6.5)

where q = q(λ′) is the solution of

4λ′

π2
=

1

(K(q)−E(q))2
− 1

E(q)2
, (6.6)

and K(q), E(q) are standard complete elliptic integrals of the first and second kind.

We show in figure (16) the comparison of F (λ′) and the ratio ∆/L for the lightest state

at L = 12 and 20. The left panel shows that there is good agreement for λ′ up to about

3− 4, reasonably within the BMN scaling window. This is a rather large value suggesting

that the agreement is working beyond perturbation theory. Indeed, we show in the same

figure the 8th and 9th order perturbative expansions of F (λ′) which read

F (λ′) = 1 + 0.089004 λ′ − 0.013272 (λ′)2 + 0.002839 (λ′)3 − 0.000676 (λ′)4

+0.000172 (λ′)5 − 0.000047 (λ′)6 + 0.000014 (λ′)7 − 4.315511 · 10−6 (λ′)8

+1.424401 · 10−6 (λ′)9 + . . . . (6.7)
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Figure 16: Ratio ∆/L for the state |FS〉 as a function of λ′ at L = 12, 20, and in the BMN limit

L→∞.

The two curves suggest a convergence radius around λ′ ' 3, somewhat smaller than the

region of agreement. If so, this could be a signal that we are slowly recovering the BMN

result.

7. Conclusions

In this paper we have considered a particular class of gauge invariant operators in the planar

limit of N = 4 SYM. These are length L single trace operators in the SU(2) sector with

zero spin. Remarkable members of this class are the so-called antiferromagnetic operator

and the dual of the semiclassical folded string state.

We have assumed a recently proposed relation between the gauge theory and a Hub-

bard-like model of itinerant fermions. This approach permits to evaluate the anomalous

dimensions of the gauge invariant operators at all couplings. In particular, we access the

strongly coupled region at fixed L.

Our investigation has been based on two complementary techniques. First, we have

evaluated the full spectrum of the model for operators with L = 4, 6, 8. This has provided

useful information about the mutual relation between the states of the Hubbard model and

the perturbative multiplet of states with a clean relation to gauge invariant operators.

Then, we have investigated the numerical solutions of the Lieb-Wu equations. They

are a powerful tool that permits, in principle, to follow a particular state from weak to

strong coupling in a totally controlled way. Our results are very simple explicit formulas

for the strong coupling expansion of the anomalous dimensions. They are expressed in

terms of specific free fermion states whose properties are easily computable.

We hope that this investigation will be useful to shed some additional light over the

non perturbative features of the states in the multiplet as well as over the connection
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between the gauge theory and the underlying integrable Hubbard model. This work can

be extended in several directions. Some are rather obvious like (a) S 6= 0 states in the

SU(2) sector, (b) sectors different than SU(2), (c) other particular states like for instance

the dual of the semiclassical circular string solution. In principle, it should be possible to

study the strong coupling region by direct perturbative expansion of the Lieb-Wu equations

although this is a delicate analysis [33]. This could be a valuable effort. It would be very

nice to reproduce in some limit of the Hubbard model the true strong coupling behavior of

string states, i.e. the typical relation ∆ ∼ (λ′)1/4 for the light states. This is non trivial at

the numerical level since large λ′ and irrelevance of possible corrections like (3.12) would

require quite large lattice sizes L.

The most interesting extension seems to be a detailed study of the other light states in

the perturbative multiplet, perhaps exploiting in a deeper way their nearly-BPS nature [34].

As L increases, our investigation shows that there is a growing number of states with a

smooth L →∞ limit. This is not unexpected and they should be described by a suitable

effective theory in the continuum. This line of analysis have been discussed in [35] in the

context of the loop-corrected Heisenberg model and should be extended to the Hubbard

model [36]. For these states, the finite L analysis of their associated Lieb-Wu solution could

provide some hindsight on the possible limiting distribution of Bethe roots and suggest a

strategy to evaluate their thermodynamical limit. In the end, this could lead to new

examples of AdS/CFT specific dualities. Indeed, the search of new string states dual to

novel Bethe Ansatz solutions seems to be far from the end [36].
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A. Exact diagonalization of the S = 0 sector of the Heisenberg model

In this appendix, we report some useful techniques for exact diagonalization of Heisenberg-

like models in sectors with fixed SU(2) spin. As discussed in the analysis of RSS, the two

loop dilatation operator is

D = L+
g2

2

∑

i

(1− σi · σi+1)− g4

4

∑

i

(3− 4σi · σi+1 + σi · σi+2) + · · · , (A.1)

where we assume periodic boundary conditions. This operator acts in the perturbative

multiplets, i.e. on the S = 0 cyclic states of the Heisenberg spin model. We can write the

various σi · σj terms by means of transpositions operators flipping spins at sites i, j

Pi,j =
1

2
(1 + σi · σj). (A.2)

The dilatation operator can be rewritten

D = L+ g2
∑

i

(1− Pi,i+1) +
g2

2

∑

i

(4Pi,i+1 − Pi,i+2 − 3) + · · · (A.3)
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where we notice that (under periodic identification of the boundaries)

Pi, i+2 = Pi,i+1 Pi+1, i+2 Pi, i+1, (A.4)

and the full operator is written in terms of elementary transpositions only, i.e. transpositions

of nearest neighboring spins. Also, cyclic states are states invariant under a lattice shift T

that can also be written in terms of elementary transpositions as the product

T = PL−1,L · · · P2,3 P1,2. (A.5)

We are interested in diagonalizing the dilatation operator in the S = 0 sector. The states

in this sector are associated with standard SU(2) Young tableaux with two rows and L/2

columns, as already discussed. However, now we are no more interested in the detailed

spin positions and we do not need translating the YT in explicit (anti)symmetrized states.

Instead, we can exploit an old computationally efficient parametrization of orthogonal

states [37] which turns out to be very suitable for our problem.

We associate a state |Y 〉 to each distinct spin zero Young tableaux Y . Then, the

nearest-neighbor transposition Pk,k+1 has the following matrix elements

〈Y ′|Pk,k+1|Y 〉 =





ρk(Y ) ≡ 1

dk(Y )
, Y = Y ′

√
1− ρ2, Y ′ is obtained from Y by k ↔ k + 1

0, otherwise.

(A.6)

The number dk(Y ) is the axial distance between the labels k and k + 1 inside Y . It is

defined as the sum of steps which are required to move from k to k + 1. The steps are

positive on the right and upward and negative otherwise.

The above representation of states is not very convenient for the analysis of generic cor-

relation functions. However, it is quite efficient for energies and SU(2) invariant correlation

functions.
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